Highest vectors of representations (total 12) ; the vectors are over the primal subalgebra. | \(-h_{6}-h_{4}-h_{3}+h_{1}\) | \(-h_{5}-h_{4}+2h_{3}+h_{2}\) | \(g_{15}\) | \(g_{16}+g_{11}\) | \(g_{12}\) | \(g_{10}\) | \(g_{14}+g_{2}\) | \(g_{8}\) | \(g_{21}\) | \(g_{20}\) | \(g_{19}\) | \(g_{17}\) |
weight | \(0\) | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{2}\) | \(2\omega_{2}\) | \(4\omega_{1}\) | \(2\omega_{1}+2\omega_{2}\) | \(2\omega_{1}+2\omega_{2}\) | \(4\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(0\) | \(2\omega_{1}-6\psi_{1}-2\psi_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}+6\psi_{1}+2\psi_{2}\) | \(2\omega_{2}-8\psi_{1}+2\psi_{2}\) | \(2\omega_{2}\) | \(2\omega_{2}+8\psi_{1}-2\psi_{2}\) | \(4\omega_{1}\) | \(2\omega_{1}+2\omega_{2}+2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}+2\omega_{2}-2\psi_{1}+4\psi_{2}\) | \(4\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}-6\psi_{1}-2\psi_{2}} \) → (2, 0, -6, -2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}+6\psi_{1}+2\psi_{2}} \) → (2, 0, 6, 2) | \(\displaystyle V_{2\omega_{2}-8\psi_{1}+2\psi_{2}} \) → (0, 2, -8, 2) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0) | \(\displaystyle V_{2\omega_{2}+8\psi_{1}-2\psi_{2}} \) → (0, 2, 8, -2) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}+2\omega_{2}+2\psi_{1}-4\psi_{2}} \) → (2, 2, 2, -4) | \(\displaystyle V_{2\omega_{1}+2\omega_{2}-2\psi_{1}+4\psi_{2}} \) → (2, 2, -2, 4) | \(\displaystyle V_{4\omega_{2}} \) → (0, 4, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(2\omega_{1}+2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | \(2\omega_{1}+2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}-6\psi_{1}-2\psi_{2}\) \(-6\psi_{1}-2\psi_{2}\) \(-2\omega_{1}-6\psi_{1}-2\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+6\psi_{1}+2\psi_{2}\) \(6\psi_{1}+2\psi_{2}\) \(-2\omega_{1}+6\psi_{1}+2\psi_{2}\) | \(2\omega_{2}-8\psi_{1}+2\psi_{2}\) \(-8\psi_{1}+2\psi_{2}\) \(-2\omega_{2}-8\psi_{1}+2\psi_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{2}+8\psi_{1}-2\psi_{2}\) \(8\psi_{1}-2\psi_{2}\) \(-2\omega_{2}+8\psi_{1}-2\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(2\omega_{1}+2\omega_{2}+2\psi_{1}-4\psi_{2}\) \(2\omega_{2}+2\psi_{1}-4\psi_{2}\) \(2\omega_{1}+2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}+2\omega_{2}+2\psi_{1}-4\psi_{2}\) \(2\psi_{1}-4\psi_{2}\) \(2\omega_{1}-2\omega_{2}+2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}-4\psi_{2}\) \(-2\omega_{2}+2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}-2\omega_{2}+2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}+2\omega_{2}-2\psi_{1}+4\psi_{2}\) \(2\omega_{2}-2\psi_{1}+4\psi_{2}\) \(2\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}+2\omega_{2}-2\psi_{1}+4\psi_{2}\) \(-2\psi_{1}+4\psi_{2}\) \(2\omega_{1}-2\omega_{2}-2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-2\omega_{2}-2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}-2\omega_{2}-2\psi_{1}+4\psi_{2}\) | \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}-6\psi_{1}-2\psi_{2}}\oplus M_{-6\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+6\psi_{1}+2\psi_{2}}\oplus M_{6\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{2}-8\psi_{1}+2\psi_{2}}\oplus M_{-8\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{2}-8\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}+8\psi_{1}-2\psi_{2}}\oplus M_{8\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{2}+8\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-4\psi_{2}} \oplus M_{-2\omega_{1}+2\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-2\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+4\psi_{2}} \oplus M_{-2\omega_{1}+2\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-2\omega_{2}-2\psi_{1}+4\psi_{2}} \oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{2\omega_{1}-6\psi_{1}-2\psi_{2}}\oplus M_{-6\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+6\psi_{1}+2\psi_{2}}\oplus M_{6\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{2}-8\psi_{1}+2\psi_{2}}\oplus M_{-8\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{2}-8\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}+8\psi_{1}-2\psi_{2}}\oplus M_{8\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{2}+8\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-4\psi_{2}} \oplus M_{-2\omega_{1}+2\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-2\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+4\psi_{2}} \oplus M_{-2\omega_{1}+2\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-2\omega_{2}-2\psi_{1}+4\psi_{2}} \oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\) |
2 & | 0\\ |
0 & | 2\\ |